Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2026
-
Eberly, Jan; Romer, David (Ed.)In the spring of 2020, the initial surge of COVID-19 infections and deaths was flattened using a combination of economic shutdowns and noneconomic non-pharmaceutical interventions (NPIs). The possibility of a second wave of infections and deaths raises the question of what interventions can be used to significantly reduce deaths while supporting, not preventing, economic recovery. We use a five-age epidemiological model combined with sixty-six-sector economic accounting to examine policies to avert and to respond to a second wave. We find that a second round of economic shutdowns alone are neither sufficient nor necessary to avert or quell a second wave. In contrast, noneconomic NPIs, such as wearing masks and personal distancing, increasing testing and quarantine, reintroducing restrictions on social and recreational gatherings, and enhancing protections for the elderly together can mitigate a second wave while leaving room for an economic recovery.more » « less
-
Solander Basin is characterized by subduction initiation at the Pacific‐Australia plate boundary, where high biological productivity is found at the northern edge of the Antarctic Circumpolar Current. Sedimentary architecture results from tectonic influences on accommodation space, sediment supply and ocean currents (via physiography); and climate influence on ocean currents and biological productivity. We present the first seismic‐stratigraphic analysis of Solander Basin based on high‐fold seismic‐reflection data (voyage MGL1803, SISIE). Solander Trough physiography formed by Eocene rifting, but basinal strata are mostly younger than ca. 17 Ma, when we infer Puysegur Ridge formed and sheltered Solander Basin from bottom currents, and mountain growth onshore increased sediment supply. Initial inversion on the Tauru Fault started at ca. 15 Ma, but reverse faulting from 12 to ca. 8 Ma on both the Tauru and Parara Faults was likely associated with reorganization and formation of the subduction thrust. The new seabed topography forced sediment pathways to become channelized at low points or antecedent gorges. Since 5 Ma, southern Puysegur Ridge and Fiordland mountains spread out towards the east and Solander Anticline grew in response to ongoing subduction and growth of a slab. Solander Basin had high sedimentation rates because (1) it is sheltered from bottom currents by Puysegur Ridge; and (2) it has a mountainous land area that supplies sediment to its northern end. Sedimentary architecture is asymmetric due to the Subtropical Front, which moves pelagic and hemi‐pelagic sediment, including dilute parts of gravity flows, eastward and accretes contourites to the shelf south of Stewart Island. Levees, scours, drifts and ridges of folded sediment characterize western Solander Basin, whereas hemi‐pelagic drape and secondary gravity flows are found east of the meandering axial Solander Channel. The high‐resolution record of climate and tectonics that Solander Basin contains may yield excellent sites for future scientific ocean drilling.more » « less
-
null (Ed.)International Ocean Discovery Program Expedition 367 is the first of two consecutive cruises that form the South China Sea Rifted Margin program. Expeditions 367 and 368 share the common key objectives of testing scientific hypotheses of breakup of the northern South China Sea (SCS) margin and comparing its rifting style and history to other nonvolcanic or magma-poor rifted margins. Four primary sites were selected for the overall program: one in the outer margin high (OMH) and three seaward of the OMH on distinct, margin-parallel basement ridges. These ridges are informally labeled A, B, and C within the continent–ocean transition (COT) zone going from the OMH to the steady-state oceanic crust of the SCS. The main scientific objectives include 1. Determining the nature of the basement within critical crustal units across the COT of the SCS that are critical to constrain style of rifting, 2. Constraining the time interval from initial crustal extension and plate rupture to the initial generation of igneous ocean crust, 3. Constraining vertical crustal movements during breakup, and 4. Examining the nature of igneous activity from rifting to seafloor spreading. In addition, sediment cores from the drill sites will provide information on the Cenozoic regional tectonic and environmental development of the Southeast Asia margin. Expedition 367 successfully completed operations at two of the four primary sites (Site U1499 on Ridge A and Site U1500 on Ridge B). At Site U1499, we cored to 1081.8 m in 22.1 days, with 52% recovery, and then logged downhole data from 655 to 1020 m. In 31 days at Site U1500, we penetrated to 1529 m, cored a total of 1012.8 m with 37% recovery, and collected log data from 842 to 1133 m. At each site we drilled to reach the depth of the main seismic reflector (acoustic basement), which prior to the expedition had been interpreted to be crystalline basement. Our objective was to determine which lithospheric layer constitutes the basement of the COT and whether there was middle or lower continental crust or subcontinental lithospheric mantle exhumed in the COT before the final lithospheric breakup. At Site U1499, coring ~200 m into the acoustic basement sampled sedimentary rocks, including early Miocene chalks underlain by pre-Miocene polymict breccias and poorly cemented gravels composed of sandstone pebbles and cobbles. Preliminary structural and lithologic analysis suggested that the gravels might be early synrift to prerift sediment. At Site U1500, the main seismic reflector corresponds to the top of a basalt sequence at ~1379.1 m. We cored 149.90 m into this volcanic package, recovering 114.92 m (77%) of sparsely to moderately plagioclase-phyric basalt comprising numerous lava flows including pillow lavas with glass, chilled margins, altered veins, hyaloclastites, and minor sediment. Preliminary geochemical analyses show that the basalt is tholeiitic. We speculate that the basalt might belong to the very early stage of magmatism prior to steady-state seafloor spreading (known as an “embryonic ocean” regime). Sampling of the Pleistocene to lower Miocene sedimentary section at Sites U1499 and U1500 was not continuous for two reasons. First, there was extremely poor recovery within substantial intervals interpreted to be poorly lithified sands. Second, we chose to drill down without coring in some sections at Site U1500 to ensure sufficient time to achieve this site’s high-priority deep objectives. Nevertheless, the upper Miocene basin sequence, consisting of interbedded claystone, siltstone, and sandstone, is continuous on seismic reflection profiles, and can be correlated between the two sites using both seismic reflectors and biostratigraphy. Together with results from other holes previously drilled in the SCS, these samples will help to constrain changes in paleoceanographic conditions during the Miocene in this part of the SCS basin.more » « less
-
null (Ed.)This addendum to the Scientific Prospectus of the International Ocean Discovery Program (IODP) South China Sea Rifted Margin Expeditions 367 and 368 (Sun et al., 2016) addresses a change of port-of-call and a two-day extension to Expedition 368 and modifications to some of the primary and alternate sites for both expeditions. As of the date of publication of this addendum, Expedition 368 is scheduled to start in Hong Kong on 9 April 2017 and end in Shanghai on 11 June. The two-day extension allows for the additional transit to Shanghai at the end of the expedition without taking time away from scientific drilling operations.more » « less
-
null (Ed.)International Ocean Discovery Program (IODP) Expeditions 367 and 368 will address the mechanisms of lithosphere extension during continental breakup. State of the art deep reflection seismic data show that the northern South China Sea (SCS) margin offers excellent drilling opportunities that can address the process of plate rupture at a magma-poor rifted margin. The SCS margin shows similarities to the hyperextended Iberia-Newfoundland margins, possibly including exhumed and serpentinized mantle within the continent-ocean transition (COT). However, recent modeling studies suggest that mechanisms of plate weakening other than serpentinization of the subcontinental lithospheric mantle exist. Two competing models for plate rupture (in the absence of excessively hot asthenospheric mantle) have widely different predictions for (1) the crustal structure across the COT, (2) the time lag between breakup and formation of igneous ocean crust, (3) the rates of extension, and (4) the subsidence and thermal history. Proposed drilling will core through thick sedimentary sections and into the underlying basement to firmly discriminate between these models. We plan to occupy four sites across a 150-200 km wide zone of highly extended seaward-thinning crust with a well-imaged COT zone. Three sites will determine the nature of critical crustal entities within the COT and constrain postbreakup crustal subsidence. These three sites will also help constrain how soon after breakup igneous crust started to form. A fourth site on the continental margin landward of the COT will constrain the timing of rifting, rate of extension, and crustal subsidence. If serpentinized mantle is found within the COT, this will lend support to the notion that the Iberia-type margin is not unique, and hence that weakening of the lithosphere by introducing water into the mantle may be a common process during continental breakup. If serpentinite is not found, and alternatively, scientific drilling results for the first time are gained in support of an alternative model, this would be an equally important accomplishment. Constraints on SCS formation and stratigraphy, including industry drilling, Ocean Drilling Program Leg 184 and IODP Expedition 349 drilling, the young (Paleogene) rifting of the margin, and absence of excessively thick postrift sediment allow us to effectively address these key topics by drilling within a well-constrained setting. An initial spreading rate of ~2 cm/y half-rate reduces the potential complexity of magma-starved, slow-spreading crust forming after breakup. Drilling, coring, and logging to address these SCS rifted margin science objectives will be undertaken during Expeditions 367 and 368, which will be implemented as a single science program.more » « less
-
Abstract The Pandora Software Development Kit and algorithm libraries perform reconstruction of neutrino interactions in liquid argon time projection chamber detectors. Pandora is the primary event reconstruction software used at the Deep Underground Neutrino Experiment, which will operate four large-scale liquid argon time projection chambers at the far detector site in South Dakota, producing high-resolution images of charged particles emerging from neutrino interactions. While these high-resolution images provide excellent opportunities for physics, the complex topologies require sophisticated pattern recognition capabilities to interpret signals from the detectors as physically meaningful objects that form the inputs to physics analyses. A critical component is the identification of the neutrino interaction vertex. Subsequent reconstruction algorithms use this location to identify the individual primary particles and ensure they each result in a separate reconstructed particle. A new vertex-finding procedure described in this article integrates a U-ResNet neural network performing hit-level classification into the multi-algorithm approach used by Pandora to identify the neutrino interaction vertex. The machine learning solution is seamlessly integrated into a chain of pattern-recognition algorithms. The technique substantially outperforms the previous BDT-based solution, with a more than 20% increase in the efficiency of sub-1 cm vertex reconstruction across all neutrino flavours.more » « lessFree, publicly-accessible full text available June 1, 2026
-
The determination of the direction of a stellar core collapse via its neutrino emission is crucial for the identification of the progenitor for a multimessenger follow-up. A highly effective method of reconstructing supernova directions within the Deep Underground Neutrino Experiment (DUNE) is introduced. The supernova neutrino pointing resolution is studied by simulating and reconstructing electron-neutrino charged-current absorption on and elastic scattering of neutrinos on electrons. Procedures to reconstruct individual interactions, including a newly developed technique called “brems flipping,” as well as the burst direction from an ensemble of interactions are described. Performance of the burst direction reconstruction is evaluated for supernovae happening at a distance of 10 kpc for a specific supernova burst flux model. The pointing resolution is found to be 3.4 degrees at 68% coverage for a perfect interaction-channel classification and a fiducial mass of 40 kton, and 6.6 degrees for a 10 kton fiducial mass respectively. Assuming a 4% rate of charged-current interactions being misidentified as elastic scattering, DUNE’s burst pointing resolution is found to be 4.3 degrees (8.7 degrees) at 68% coverage. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available May 1, 2026
-
Abstract This paper introduces a novel track-length extension fitting algorithm for measuring the kinetic energies of inelastically interacting particles in liquid argon time projection chambers (LArTPCs). The algorithm finds the most probable offset in track length for a track-like object by comparing the measured ionization density as a function of position with a theoretical prediction of the energy loss as a function of the energy, including models of electron recombination and detector response. The algorithm can be used to measure the energies of particles that interact before they stop, such as charged pions that are absorbed by argon nuclei. The algorithm's energy measurement resolutions and fractional biases are presented as functions of particle kinetic energy and number of track hits using samples of stopping secondary charged pions in data collected by the ProtoDUNE-SP detector, and also in a detailed simulation. Additional studies describe the impact of thedE/dxmodel on energy measurement performance. The method described in this paper to characterize the energy measurement performance can be repeated in any LArTPC experiment using stopping secondary charged pions.more » « lessFree, publicly-accessible full text available February 1, 2026
-
The international collaboration designing and constructing the Deep Underground Neutrino Experiment (DUNE) at the Long-Baseline Neutrino Facility (LBNF) has developed a two-phase strategy toward the implementation of this leading-edge, large-scale science project. The 2023 report of the US Particle Physics Project Prioritization Panel (P5) reaffirmed this vision and strongly endorsed DUNE Phase I and Phase II, as did the European Strategy for Particle Physics. While the construction of the DUNE Phase I is well underway, this White Paper focuses on DUNE Phase II planning. DUNE Phase-II consists of a third and fourth far detector (FD) module, an upgraded near detector complex, and an enhanced 2.1 MW beam. The fourth FD module is conceived as a "Module of Opportunity", aimed at expanding the physics opportunities, in addition to supporting the core DUNE science program, with more advanced technologies. This document highlights the increased science opportunities offered by the DUNE Phase II near and far detectors, including long-baseline neutrino oscillation physics, neutrino astrophysics, and physics beyond the standard model. It describes the DUNE Phase II near and far detector technologies and detector design concepts that are currently under consideration. A summary of key R&D goals and prototyping phases needed to realize the Phase II detector technical designs is also provided. DUNE's Phase II detectors, along with the increased beam power, will complete the full scope of DUNE, enabling a multi-decadal program of groundbreaking science with neutrinos.more » « less
An official website of the United States government

Full Text Available